Adsorbent Size's Impact On Removing Heavy Metals
Abstract
Keywords
Full Text:
PDFReferences
Diharyo, S., Damanik, Z., & Gumiri, S. (2020). Pengaruh Lama Aktifasi Dengan H3po4 Dan Ukuran Butir Arang Cangkang Kelapa Sawit Terhadap Ukuran Pori Dan Luas Permukaan Butir Arang Aktif. PROSIDING SEMINAR NASIONAL LINGKUNGAN LAHAN BASAH, 5(1), 48–54.
Fong, K. F. (2018). Impact of adsorbent characteristics on performance of solid desiccant wheel. Energy, 144, 1003–1012. https://doi.org/10.1016/j.energy.2017.12.113
Franchina, F. A. (2021). Impact of the adsorbent material on volatile metabolites during in vitro and in vivo bio-sampling.
Talanta, 222. https://doi.org/10.1016/j.talanta.2020.121569 Gonzalez, M. N. G. (2022). Life cycle assessment of a nanomaterial-based adsorbent developed on lab scale for cadmium removal: Comparison of the impacts of production, use and recycling. Cleaner Environmental Systems, 4. https://doi.org/10.1016/j.cesys.2022.100071
Indah, S., Helard, D., & Yedriana, R. (2016). Pengaruh variasi konsentrasi logam mangan (Mn) terhadap efisiensi penyisihan logam besi (Fe) pada adsorpsi menggunakan serbuk kulit jagung sebagai adsorben. Jurnal Dampak, 13(2), 100–106.
Keputusan Menteri Lingkungan Hidup Nomor 113 Tahun 2003 Tentang Baku Mutu Air Limbah Bagi Usaha Dan Atau Kegiatan Pertambangan Batubara. (2003).
Khalil, I. (2020). Selective elimination of phenol from hydrocarbons by zeolites and silica-based adsorbents—Impact of the textural and acidic properties. Journal of Hazardous Materials, 384. https://doi.org/10.1016/j.jhazmat.2019.121397
Köse, K. (2020). Applications and impact of nanocellulose based adsorbents. Cellulose, 27(6), 2967– 2990. https://doi.org/10.1007/s10570-020-03011-1
Kumar, P. S., Korving, L., Keesman, K. J., van Loosdrecht, M. C., & Witkamp, G. J. (2019). Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chemical Engineering Journal, 358, 160–169.
Kusumastuti, R. (2014). Analisis Pengaruh Ukuran Butir Karbon Aktif Terhadap Adsorpsi Gas N2 Dan O2 Pada Kondisi Kriogenik. Sigma Epsilon-Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir, 17(2).
Liu, S. (2019). Modified Silica Adsorbents for Toluene Adsorption under Dry and Humid Conditions: Impacts of Pore Size and Surface Chemistry. Langmuir, 35(27), 8927–8934. https://doi.org/10.1021/acs.langmuir.9b01031
Lv, D. (2018). Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials and Interfaces, 10(9), 8366–8373. https://doi.org/10.1021/acsami.7b19414
Musso, T. B., Parolo, M. E., Pettinari, G., & Francisca, F. M. (2014). Cu (II) and Zn (II) adsorption capacity of three different clay liner materials. Journal of Environmental Management, 146, 50– 58.
Pambayun, G. S., Yulianto, R. Y., Rachimoellah, M., & Putri, E. M. (2013). Pembuatan karbon aktif dari arang tempurung kelapa dengan aktivator ZnCl2 dan Na2CO3 sebagai adsorben untuk mengurangi kadar fenol dalam air limbah. Jurnal Teknik ITS, 2(1), F116–F120.
Paradise, M., Nursanto, E., Nurkhamim, N., & Haq, S. R. (2022). Use Of Claystone , Zeolite, And Activated Carbon To Remove Heavy Metals From Acid Mine Drainage In Coal Mining. ASEAN Engineering Journal, 12(2), 75–81.
Petrovic, B. (2022). Impact of Surface Functional Groups and Their Introduction Methods on the Mechanisms of CO2 Adsorption on Porous Carbonaceous Adsorbents. Carbon Capture Science and Technology, 3. https://doi.org/10.1016/j.ccst.2022.100045
Rahmayani, F., & Siswarni, M. Z. (2013). Pemanfaatan limbah batang jagung sebagai adsorben alternatif pada pengurangan kadar klorin dalam air olahan (treated water). Jurnal Teknik Kimia USU, 2(2), 1–5.
Suliestyah, S., Tuheteru, E. J., & Hartami, P. N. (2018). Pengaruh ukuran butir batubara dan komposisi batubara-ZnCl2 pada daya serap karbon aktif terhadap logam Fe, Cu dan Zn dalam limbah cair. Jurnal Teknologi Mineral Dan Batubara, 14(3), 201–212.
Syauqiah, I., Amalia, M., & Kartini, H. A. (2011). Analisis variasi waktu dan kecepatan pengaduk pada proses adsorpsi limbah logam berat dengan arang aktif. Info-Teknik, 12(1), 11–20.
Yean, S., Cong, L., Yavuz, C. T., Mayo, J. T., Yu, W. W., Kan, A. T., & Tomson, M. B. (2005). Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research, 20(12), 3255–3264.
DOI: https://doi.org/10.31315/jilk.v5i2.9167
DOI (PDF): https://doi.org/10.31315/jilk.v5i2.9167.g5875
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jurnal Ilmiah Lingkungan Kebumian
This work is licensed under a Creative Commons Attribution 4.0 International License.
Editorial Office;
Program Studi Teknik Lingkungan, Fakultas Teknologi Mineral, UPN “Veteran” Yogyakarta.
Jl. SWK 104 (Lingkar Utara) Condongcatur, Sleman, Yogyakarta 55283
Telp./ Fax. (0274) 486400, Email:[email protected]
Jurnal Ilmiah Lingkungan Kebumian is licensed under a Creative Commons Attribution 4.0 International License.